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Abstract

In the aftermath of the Global Financial Crisis, both micro- and macro-prudential regula-
tion are at work, but they are based on ”ad-hoc” rules. This paper proposes an alternative
micro-founded optimal prudential rule. Our unique prudential regulation progressively
conducts all banks to an optimal asset level, thus avoiding the ”too big to fail” paradigm.
For a given critical asset level up to which the PA can successfully constrain banks, the
optimal asset level is shown to be equal to half this critical value. Our optimal policy
rule depends on banks’ size. The PA should hence constrain large banks to progres-
sively reduce their assets level and conversely encourage small banks to progressively
increase it. A simultaneous regulation of banks on different loan markets, which ac-
counts for correlation risk, accelerates the speed of convergence toward bank system
equilibrium whatever the initial level of the asset. This micro-founded mechanism can
be easily implemented in Dynamic Stochastic General Equilibrium (DSGE) models de-
signed for prudential policy analysis.
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1 Introduction
The Global Financial Crisis has emphasized the limits of the financial regulation to deal
with financial instability. Governments needed to bail out several large banks in order
to avoid systemic crisis in financial markets. This confirms the importance of the issue
about the impunity degree of large banks. As explained by Pontell et al., (2014), in-
vestigations have shown that the financial crisis came from of their riskiness behaviour.
Even if authorities have left Lehman Brother bank collapse, they helped other banks to
survive through massive indebtedness of governments and unconventional central bank
policies (Mishkin, 2011). These aids were a signal of the governmental dependence on
banking system.
The banking regulation was clearly not the best to insure financial stability. For the pre
2008 period, it was especially based on microprudential regulations (i.e. individual risk
of each bank) whereas macroprudential risk effect of large banks wasn’t taken account
(Brunnermeier et al., 2009). This lack of efficiency led financial authorities to quickly
design new capital requirements through Basel 2.5 and Basel 3. These new regulations
tried to manage macroprudential risk without taking into account spillover effects be-
tween banking activity (Kashyap et al., 2011). New systemic macroprudential ratios
were added for large banks and tighter control was imposed for them, but their efficiency
seems different across countries (Cosimano and Hakura, 2011). Furthermore, there is
an arbitrage risk for banks since Basel 3 allows banks to weight their assets differently.
Indeed, an interbank loan is lighter weighted by regulation than a corporate loan since
risk profile is different. Thus, spillover effect of a prudential policy is difficult to man-
age and leads to imbalances in several segments of banking sector.
Prudential regulations try to take up the challenge with empirical exercises such as stress
test for macroprudential requirements (Acharya et al., 2014) or statistical assumptions
for microprudential requirements (Risk Weighted Asset follows a Gaussian law). But,
both microprudential and macroprudential regulations are currently based on ”ad-hoc”
rules, without any theoretical micro-foundation.
This led to wonder what would be an efficient prudential policy and how to built it from
a more theoretical point of view. Is the distinction between micro- and macro-prudential
regulation really unavoidable?
To our knowledge, our paper is the first to address these questions and it provide a
micro-founded mechanism for prudential decision rules. It suggests an alternative op-
timal prudential rule to the micro/macro-prudential regulation. The prudential risk is
analysed through bank asset size (Asset approach) to get a tractable way to examine
PA. The aim of the prudential policy would be to progressively conduct each bank to-
wards an optimal asset level, thus avoiding some banks to become too big to fail and
to destabilize the credit market. In our model, banks are allowed to act simultaneously
on two loan markets. The PA can either regulate each loan market separately or simul-
taneously, by taking into account the correlation risk effect between the different loans.
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When defining a critical asset level up to which the PA can successfully impose con-
straints to banks, the optimal situation corresponds to a banks’ asset level that represents
half the critical value. The micro-founded PA policy rule that insures the convergence of
banks towards this optimal situation must take into account the particular size of banks.
Thus, the PA would constrain big banks to progressively reduce their assets until the
optimal size condition is verified, but it would encourage small banks to progressively
increase towards the optimal asset level. By simultaneously taking into account the
activity of banks on both segments of the credit market when deciding the optimal regu-
lation, the PA can accelerate the convergence towards the optimal solution whatever the
initial value of the asset size. This is so because the PA can coordinate its actions on the
two loan markets in order to stabilize more quickly one of them, when a shock arises.
We finally suggest a way to integrate the mechanism in a Dynamic Stochastic General
Equilibrium (DSGE) model designed for prudential policy or policy-mix analyses.
The rest of the paper is structured as follows. Section 2 is dedicated to the determi-
nation of the micro-founded optimal level of assets for banks,see half the maximum
critical value fixed by the PA. It also checks the robustness of theoretical result with
an empirical exercise on several banking data samples. Section 3 explains how a real
PA should set up its prudential policy in order to progressively conduct banks towards
the optimal solution previously obtained. It also analyses the convergence speed of the
policy with and without correlation risk effect when a shock occurs on bank asset size in
a given loan market. Section 4 explains the higher convergence speed in the presence of
correlation risk effect and thus show the utility of the coordinated regulation of different
loan markets by the PA. Section 5 introduces a simple way to incorporate the mecha-
nism in a DSGE model by using the one provided by Gerali et al., (2010). Section 6
concludes.

2 The long-run equilibrium for prudential regulation

2.1 Theoretical framework
We are in a closed economy where a bank ”i” acts in two loan markets to manage its
asset quantities (A1(i) and A2(i) respectively). There is a Prudential Authority (hence-
forth PA) which regulates both sectors by implementing policy to limit asset level of
banks individually. In our model, asset size is the main channel to represent banks risk
behaviour which also corresponds to one of the mains Basel rules criteria to monitor the
financial institutions.
The PA and the bank know that in each market there is a critical size up to which reg-
ulator can manage its size (also its risk). This threshold is denoted by A1(max) and
A2(max) for market 1 and 2 respectively. This means that the authority can face this
problem in one market whereas it is able to manage the risk level of bank in the other
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market. Therefore, the worst scenario for authority would be to get this dilemma in both
loan sectors. But, the more a bank is approaching the critical size on one market, the
more it becomes ”too big to fail” and feels less concerned by the authority constraint.
In other words, for all asset level lower than the critical size, the bank remains under the
control of the PA, but the PA capacity to control the bank is reducing when this later is
approaching the critical value of assets.

We introduce heterogeneity in markets size through a scale parameter θ applied on these
critical sizes:

A1(max) = θA2(max)

where θ represents the importance of the first loan market relative to the second one.
This value is known both by PA and banks.

The aim of bank ”i” would be to reach threshold asset level in both markets whichever
the risk that this action would imply. However, it knows that the PA would not allow
it. As a result, it decides to integrate the anticipated regulator action in its investment
strategy. To do so, it sets up an adjusted multiplier of asset level allowed by the PA for
each market. It proceeds in several steps1 :

- First, since bank ”i” observes the critical asset size in market 1, it defines the standard
multiplier which would like to get in this market, without taking into account the risk :

Standard Multiplier =
A1(max)

A1(i)

However, this multiplier has to be adjusted because bank knows that the PA prevents it
from reaching the threshold level. Indeed, when deciding its policy, PA adjusts down-
ward the previous bank standard multiplier by taking into account a risk effect denoted
X . X is a private information of the PA and it will not be provided to the bank. More-
over, the PA constraint for bank i in market 1 is contingent to the size of the bank on
the market 1 relative to its global size. Indeed, the more the bank is approaching the
critical size and becomes ”too big to fail” on market 1, the lower is the ability of the PA
to constrain it. The PA knows that and takes it into account by imposing a weaker PA
regulation. The PA Rule would thus imply an adjusted multiplier in market 1 given by:

Adjusted Multiplier =
A1(max)

A1(i)
e
−X

[
A1(max)− A1(i)

A1(i) + A2(i)

]
Where A1(i) + A2(i) represents the global asset size of bank ”i”.

1We only describe the process in one market because it is identical for the other one.
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- Second, the bank would like to know the expected value of the adjusted multiplier
imposed by the PA to get its optimal asset size in the market 1. Nevertheless, X is to be
defined in the range [0,+∞[ which complicates computation to get the mean value. To
get round this issue, we suggest to take the sum of each possible value of X and rescale
the domain through a temporal index :

Consider the sum as the integral of all possible value of X in the interval [0,+∞[ via
the function f(X) :

f(X) =

∫ +∞

0

A1(max)

A1(i)
e
−X

[
A1(max)− A1(i)

A1(i) + A2(i)

]
dX

Then we get :

F (X) =
A1(i) + A2(i)

A1(i)

1

1− A1(i)
A1(max)

We suppose that the threshold A1(max) is always higher than A1(i) which allows to
express the previous equation as a geometric series with a common ratio of A1(i)

A1(max)
:

F (X) =
A1(i) + A2(i)

A1(i)

∞∑
t=0

(
A1(i)

A1(max)

)t
We observe that the t index of the geometric series reflects the level of area under the
function f(X). Therefore, the index is a rescaling variable of the function and we as-
sume that it corresponds to a time-horizon of prudential policy. This choice is motivated
by the fact that time index acts as uncertainty parameter when it increases, i.e. when it
considers a large horizon in the future. This is in line with the prudential policy because
the higher is time-horizon, the lower is the additional regulation due to a higher uncer-
tainty of bank asset level in the future.
Furthermore, the bank knows that only a part of this sum will be kept by the PA. To
express this idea, we postulate that the geometric series is finite which leads to get a t
index bounded at time T :

F T (X) =
A1(i) + A2(i)

A1(i)

T∑
t=0

(
A1(i)

A1(max)

)t
Equivalently, we have :
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F T (X) =
A1(i) + A2(i)

A1(i)

1−
(

A1(i)
A1(max)

)T+1

1− A1(i)
A1(max)


- Third, bank ”i” defines the optimal value of it assets in market 1. To do that, we
compute the first order condition of F T (X) respect to A1(i).

∂F T (X)

∂A1(i)
= 0

[
1−

{(
A1(i)

A1(max)

)T+1

+ (T+1)
A1(max) (A1(i) + A2(i))

(
A1(i)

A1(max)

)T}] [
A1(i)− (A1(i))

2

A1(max)

]
[
A1(i)− (A1(i))

2

A1(max)

]2

−

[
1− 2 A1(i)

A1(max)

] [
(A1(i) + A2(i))

(
1−

(
A1(i)

A1(max)

)T+1
)]

[
A1(i)− (A1(i))

2

A1(max)

]2 = 0

As we observe, when A1(i) = A1(max), there is no defined solution but an other one
can be found if we consider at the same time that :

[
1− 2

A1(i)

A1(max)

]
= 0

A1(i) =
A1(max)

2
(1)

And

[
1−

{(
A1(i)

A1(max)

)T+1

+
(T + 1)

A1(max)
(A1(i) + A2(i))

(
A1(i)

A1(max)

)T}]
= 0
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(A1(i) + A2(i)) =


(
A1(max)
A1(i)

)T
− A1(i)

A1(max)

(T + 1)

A1(max) (2)

Regardless the time-horizon considered by the PA, equation (1) shows that optimal asset
level for the bank in market 1 corresponds to the half of the critical size. This also re-
flects the best strategy of the bank when it has no information on the asset size expected
by the authority.
Equation (2) describes the growth path of the bank global size (i.e., in both markets)
with respect to time horizon. Since the first condition says that the optimal size of bank
”i” in market 1 is independent of time horizon, equation (2) can be interpreted as the
optimal growth path of bank ”i” asset size in market 2.
If we inject solution (1) and (2) into F T (X), then we will obtain the optimal adjusted
multiplier :

F opt−T (X) =
2T+2 + 2−T − 4

(T + 1)

Where 2 stands for the optimal relative asset size A1(max)
A1(i)

= 2 from equation (1). We
see that without time-horizon (i.e. T = 0), the optimal multiplier becomes :

F opt−0(X) = 1

As a result, if a PA implements a policy without time-horizon in its strategy and the bank
is at the optimal asset size in market 1, then its optimal action will be to keep this size.
For banks that have not the optimal size, in a convergence purpose towards the optimal
size, the PA should opt to regulate differently large ans small banks. Thus, large banks,
whose assets on market 1 exceed the optimal size, should be constrained to come back
to the optimum. Conversely, small banks should be encouraged to increase in order to
gain the optimal size. More competition among banks of similar optimal size would
simply be suitable for the financial stability.

2.2 Empirical evaluation of the T index value
Up to now, we have analysed bank behaviour without considering what is the scale of
time index t for prudential policy horizon (day ?, week ?, month ?, quarter ?, etc.). To
span this issue, we assume that a ”t index” corresponds to a decade. This suggestion is
based on time between changes in prudential regulation : 1987, Basel 1; 1999, Basel 2
even if it was implemented in 2004 and 2008 for Basel 3.2

2Bank for International Settlements, https://www.bis.org/bcbs/history.htm
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In order to check the consistency of this suggestion, we propose to estimate an empirical
relative asset size denoted k on several data samples. The aim is to see if results are close
to the optimal value, i.e., when k = 2 = kopt. To do so, we have to find the non-optimal
form of adjusted multiplier which is possible if we assume that the condition of equation
(1) is not satisfied. In this case, we can rewrite this equation by :

A1(i) =
A1(max)

k
(3)

In economic terms, it means that bank ”i” can’t be to the optimal size immediately
because of time to adjustment and other frictions (such as demand and supply ones).
Moreover, the form of the equation (2) remain unchanged :

(A1(i) + A2(i)) =


(
A1(max)
A1(i)

)T
− A1(i)

A1(max)

(T + 1)

A1(max)

Then we inject equation (2) and (3) into F T (X) to get the non-optimal form of the
adjusted multiplier :

F T−No−opt(X) =
kT+2 + k−T − 2k

(k − 1)

1

(T + 1)
(4)

To estimate the empirical k, we have to proceed in several steps :

a) We collect data samples from the Federal Reserve Bank of Saint Louis data base.
We need long data to test for robustness since we look at decades. To do that, we take
US banking series available from 1947 to 2017 : Loans and Lease, Commercial and
Industrial Loans, Real Estate Loans and Consumer Loans.3 4

b) We suppose a representative bank whose allowed growth corresponds to the empirical
multiplier. The later is computed as the average value of the upper / lower bound ratio of
datas from a rolling window sample containing i decades observations. Since we have
seven decades, we are able to calculate six empirical multipliers 5

c) We estimate multipliers provided by our model through equation (4). The aim is
to find the k which minimizes the gap between empirical and theoritical multpliers for
each decade.

3European data only start from 1998 in ECB data base which is not convenient to test the robustness
of the model (only two data retained).

4Data are seasonally adjusted.
5The seventh empirical multplier is not computed because we can’t use the rolling window process.
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Table 1: Estimated k from first to sixth decades

Period / Data Loans and Lease Commercial and Industrial Loans Real Estate Loans Consummer Loans

10 years 2.15 2.11 2.24 2.13

20 years 2.22 2.13 2.44 2.15

30 years 2.37 2.25 2.68 2.28

40 years 2.44 2.29 2.8 2.33

50 years 2.46 2.28 2.8 2.33

60 years 2.47 2.26 2.77 2.35

Table 1 shows estimated k of the four types of loan at each decade. Results indicates
that estimated k are not too far from the optimal value (k = 2) since the higher one is
equal to 2.8 and corresponds to real estate loans. This market provides higher results
because of the boom mortgage credit before subprime crises.

We can resume our main result in this section as follows. Assuming that banks have in-
complete information on the market and integrate in their decision rule their perception
on the prudential policy, we were able to show that the optimal value provided the PA
corresponds to the half of a threshold asset size A1(max) which is known by all agents
in the market. To get this result, we have assumed the existence of temporal index which
permits to get round the mean Riemann integral issue. The robustness of this idea was
checked through an empirical exercise to examine if the optimal multiplier provided by
the mechanism depart from the empirical multiplier of market loans.

3 The prudential policy mechanism
We have seen in the previous section that the optimal asset size of bank is reached
when it corresponds to the half of the threshold level. The definition of an optimal asset
level makes a converging prudential policy possible for the PA. This later may want to
stabilize the credit sectors separately or simultaneously, by insuring a progressive con-
vergence towards the optimal size. It decides to consider two scenarios in its prudential
rule: with and without correlation between credit sectors. In absence of this correlation
effect, the PA separately conducts its policy on each market. It only cares about the
evolution of bank asset in each sector. However, when the correlation is incorporated in
the PA decision rule, this one is simultaneously conduct policies on both markets. It is
forced to consider the stability of all credit sectors rather than to take into account only
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one. As we will see, this additional issue incites the PA to implement a faster convergent
policy.
In this part, we come back to the PA policy rule and are going to see how the authority
fixes the risk level X and which is the explicit form of the PA policy rule.
The PA has to respect two criteria in the conduct of its action : progressive and con-
verging policy. The first feature characterizes the PA willingness to smooth its impact
on the economy by avoiding sudden adjustment of banks. This is also in line with the
phase in process of Basel rules to implement a policy6. The second objective describes
the wish of authority to get homogeneity of bank size in a market in order to encourage
the competition among them. In our model, the converging policy implies for the PA to
define a benchmark asset level. Since it knows the optimal asset size self-defined by the
bank in the previous part, it decides to consider A1(max)

2
as the benchmark.

3.1 A prudential policy without correlation risk effect.
We keep the same economic environment as in the previous section : we are in a closed
economy with two loans market where a PA regulates each bank ”i” in their respec-
tive market. For simplicity, we will consider in this section that the two loan markets
have similar size, which implies θ equal to 1. Such as before, we are going to study
the construction of adjusted multiplier under prudential policy for one market with the
assumption of symmetrical features for the set up of the multiplier in the other market.

We suppose that the PA implements the following prudential policy to build its adjusted
multiplier :

Adjusted multiplier =
A1(max)

A1(i)
e
−X

[
A1(max)−A1(i)
A1(i)+A2(i)

]
(5)

Contrary to the bank, PA decides the level of X which drives its prudential policy. It
considers this variable as the sum of standard multipliers time-variance of both mar-
kets. However, it doesn’t take into account the potential correlation between these two
markets. Therefore, the adjusted multiplier defined by the PA can be rewritten as :

Adjusted multiplier =
A1(max)

A1(i)
e
−[V ar(k1)+V ar(k2)]

[
A1(max)−A1(i)
A1(i)+A2(i)

]
(6)

6See for example the phase in process of the leverage ratio in Basel III which was fully implemented
in 2018.
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Where V ar(km) = V ar(Am(max)
A1(m)

) (for m = 1, 2) stands for the time-variance of stan-
dard multiplier in market m.

To define the consistent risk measure V ar(k1) + V ar(k2), we assume that the PA has
two priorities in the setting up of its prudential policy. In one hand, it wants to bound
its regulation on a bank ”i” in market 1 which has not reached the critical level since
it has no control on its risk in that case. In the other hand, the PA supposes that there
is no correlation between markets so it has to define the level of global time-variance
which incites to only focus on evolution of assets in market 1 when the regulation is
implemented in this market.

To answer these two issues, we suggest to proceed as follows :

1) Linearise with natural logarithm the adjusted multiplier denoted by M(A1(i)) :

ln(M(A1(i))) = −[V ar(k1) + V ar(k2)]

[
A1(max)− A1(i)

A1(i) + A2(i)

]
+ ln (A1(max))− ln (A1(i))

2) Express the first order condition of the previous equation w.r.t A1(i) :

∂ln(M(A1(i)))

∂A1(i)
= 0

−[V ar(k1) + V ar(k2)]

[
− (A1(i) + A2(i))− (A1(max)− A1(i))

(A1(i) + A2(i))
2

]
− 1

A1(i)
= 0

3) Consider A1(i) = A1(max) and deduce that :

V ar(k1) + V ar(k2) =
A1(i) + A2(i)

A1(max)
(7)

However we look at a functional form to get global time-variance for each value ofA1(i)
and not only when A1(i) = A1(max). Since we assume that there is no correlation
between two markets, we suggest to keep the form V ar(k1) + V ar(k2) =

∑2
m=1 Am(i)

A1;2(max)

which cancels out the effect of the market 2 assets evolution in the prudential regulation
of assets in market 1.
Therefore, for any value of A1(i), global time-variance can be expressed as :

A1(i) + A2(i)

A1(max)
=

(
A1(i)

A1(max)
+

A2(i)

A1(max)

)
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Through the market size identity we get7 :

A1(i) + A2(i)

A1(max)
=

(
A1(i)

A1(max)
+

θA2(i)

A2(max)

)
Consequently, in the absence of correlation and by injecting equation (7) into (6), the
adjusted multiplier defined by the PA is :

Adjusted multiplier PA =
A1(max)

A1(i)
e
−
(

1− A1(i)
A1(max)

)
Moreover, the PA wants a converging prudential policy toward the benchmark asset size
A1(max)

2
. To do that, it integrates a converging coefficient γ in the previous formula8 :

Adjusted multiplier PA =
1

γ

A1(max)

A1(i)
e
−γ
(

1− A1(i)
A1(max)

)
Equivalently :

Adjusted multiplier PA =
1

γ
k1e
−γ
(

1− 1
k1

)
Where k1 = A1(max)

A1(i)
.

Once the adjusted multiplier has been defined by the PA, one can compute the maximum
relative asset size allowed by the PA. It can be considered as a ceiling value that bank
”i” is not allowed to exceed and it is denoted by kPA−ceiling1 .

kPA−ceiling1 =
A1(max)

A1(ceiling)
=

A1(max)

Adjusted multiplier PA× A1(i)
=

γA1(max)

k1e
−γ
(

1− 1
k1

)
× A1(i)

We can simplify by :

kPA−ceiling1 = γe
γ
(

1− 1
k1

)
Since there is no frictions in our mechanism, the value of k1 is automatically adjusted
to the kPA−ceiling1 required by the PA9. As it is shown in the following graph, the con-
vergence to k1 = 2 is guaranteed whatever its initial value of k1. Figure 1 simulates the

7For simplicity, we assume that both loans market have the same size, i.e., θ = 1.
8Due to the non-linearity, the value of γ is found by a solver which satisfies the following condition

γe0.5γ = 2. Solution gives γ ≈ 1.1343.
9In our simulation, this assumption is equivalent to say that kPA−ceilingm corresponds to the k1 at the

next period.
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dynamic path of kPA−ceiling1 with an initial value of k1 = 5 and we observe that it needs
almost ten periods to converge toward the optimal value properly.

1 5 10 15 20 25 30 35
Period

2

2.2

2.4

2.6

2.8

3

kPA ce
ili

ng

Figure 1: Dynamic path of kPAceiling (initial value k1 = 5).

This type of convergence speed can be appreciated in DSGE models since these ones
look at short term modifications of the economy after a shock. Indeed, if we start our
dynamic model with k1 = 2 and put a negative deterministic shock to reduce bank asset
size of 10% (k1 = 2.22) at the fifteenth period, then the convergence time will be rel-
atively close to ten periods again (see figure 2). This type of dynamic can be useful to
mimic gradual and non-linear changes of PA and bank behaviour close to the optimal
asset size.

1 5 10 15 20 25 30 35
Period

1.98

2

2.02

2.04

2.06

2.08

2.1

2.12

kPA ce
ili

ng

Figure 2: Impact of asset size negative shock on kPAceiling dynamic path.

Furthermore, the convergence speed seems similar for a positive or negative shock with-
out other frictions (such as demand or supply constraints). We demonstrate that by sim-
ulating the same negative shock plus a positive one to increase bank asset size of 10%
(k1 = 1.82) at the thirty-fifth period. Figure 3 draws the dynamic path and we notice
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that positive shock disappears after ten periods such as negative one. We will see in next
parts that the integration of the correlation risk effect influences the convergence speed.

1 5 10 15 20 25 30 35 40 45 50
Period

1.85

1.9

1.95

2

2.05

2.1

2.15

kPA ce
ili

ng

Figure 3: Impact of asset size negative and positive shock on kPAceiling dynamic path.

3.2 A prudential policy with correlation risk effect
In this part, we extend the prudential regulation of the PA by integrating the correlation
in global time-variance. This seems a realistic feature since the authority guesses that
its regulation on one loan market affect the prudential management in the other market.
The underlying consequences comes from the reaction of bank to smooth the prudential
regulation cost by adjusting the level of its two asset types.
As a result, authority is not able to define the level of correlation which depends of bank
strategies. These strategies is not communicated by the bank because it will become
public informations and provide market power for bank competitors. An other reason
is the lack of skill for PA to gauge the correlation properly. Empirical evidences show
that prudential regulators suggest banks to assess themselves the riskiness degree of
their asset (IRB and IRB advanced model) even if authorities provide an external tool
of risk assessment (Standard approach). The aim for regulators is to better understand
specificities of some banking sectors (e.g, correlation targeting for portfolio strategies,
clients management,...) to improve their own risk evaluation model.
To reflect this idea, we suggest to consider a PA which not evaluates properly the global
time-variance because of the correlation effect. The level of this effect is an unknown
variable Y for authorities which leads to define its adjusted multiplier as :

Adjusted multiplier PA =
A1(max)

A1(i)
e−(V ar(k1)+V ar(k2)+2σk1σk2Y )

[
A1(max)−A1(i)
A1(i)+A2(i)

]

Where σk1 and σk2 stands for the standard deviation of standard multiplier in market 1
and 2 respectively.
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Since it is an unknown, the PA takes the expected value of its adjusted multiplier denoted
by f1(Y ) :

f1(Y ) =
1

2

∫ 1

−1

A1(max)

A1(i)
e−(V ar(k1)+V ar(k2)+2σk1σk2Y )

[
A1(max)−A1(i)
A1(i)+A2(i)

]
dY

After some algebra computations, we can express the expected adjusted multiplier of
PA as :

f1(Y ) =
A1(max)

A1(i)
e−(V ar(k1) + V ar(k2))g(Am(i))

∞∏
j=0

cosh
((σk1σk2

2j

)
g(A1(i))

)
(8)

Where g(A1(i)) =

[
A1(max)− A1(i)

A1(i) + A2(i)

]
and cosh corresponds to the hyperbolic co-

sine.

Notice that the correlation term is caught by the Cartesian product of the hyperbolic
cosine 10. The more multiplicative terms j is added, the wider the range of correlation
is considered by the PA. If we take the correlation effect with only j = 0, then it
will be equivalent to say that the PA scans the expected value for the case of either
correlation = 0.5 or correlation = −0.5 (see figure 4). If we take a larger correlation
risk effect range, for instance, until j = 2, then it will take into account an additional
”correlation area” respect to the initial case j = 0. However, the increase of this area
tends to reduce when j goes to +∞ which means that the PA is less concerned by
the contribution of an additional increase of the correlation range. Figure 5 shows that
contribution is especially based on the four first j terms of the Cartesian product which
indicates a strong decrease of the marginal interest for an additional correlation area.11

To define the consistent risk measure V ar(k1) + V ar(k2), we assume that the PA has
two priorities. In one hand, it wants to bound its regulation on a bank ”i” in market
1 which has not reached the critical size since it can’t manage its risk in that case. In
the other hand, we suppose that the correlation has only a multiplicative effect on the
adjusted multiplier without correlation defined previously.
To answer these two issues, we suggest to proceed as follows :

10This hyperbolic property permits to get round the undefined solution problem in the definition of
global time-variance in next paragraphs.

11σk1 and σk2 are defined by the equation (8) and (9) of the next part while γcorrel is obtained via a
solver (see p.21).
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Figure 4: Range of correlation scanned by the PA.
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Figure 5: Marginal log-contribution of a range correlation increase.

1) Linearise with natural logarithm the expected adjusted multiplier :

ln(f1(Y )) = −[V ar(k1) + V ar(k2)]

[
A1(max)− A1(i)

A1(i) + A2(i)

]
+ ln (A1(max))− ln (A1(i))

+
∞∑
j=0

ln
(
cosh

((σk1σk2
2j

)
g(A1(i))

))

2) Express the first order condition of the previous equation w.r.t A1(i) :

∂ln(f1(Y ))

∂A1(i)
= 0

16



−[V ar(k1) + V ar(k2)]

[
− (A1(i) + A2(i))− (A1(max)− Am(i))

(A1(i) + A2(i))
2

]
− 1

Am(i)

+σk1σk2

[
(A1(i) + A2(i))− (A1(max)− A1(i))

(A1(i) + A2(i))
2

] ∞∑
j=0

1

2j
tanh

((σk1σk2
2j

)
g(A1(i))

)
= 0

Where tanh() stands for the hyperbolic tangent.

3) Consider A1(i) = A1(max) and deduce that :

V ar(k1) + V ar(k2) =
(A1(i) + A2(i))

A1;2(max)
(9)

To get a tractable function, we make the hypothesis that the correlation risk effect has
only a multiplicative effect on PA decision rule. This assumption leads to get the func-
tional form of V ar(k1) + V ar(k2) for any A1(i) :

V ar(k1) + V ar(k2) =
(A1(i) + A2(i))

A1(max)
∀ A1(i)

Furthermore, the PA seeks to homogenize banks size in market 1 by converging them
toward the benchmark level A1(max)

2
. To do so, authority integrates in the same way as

the previous part a converging coefficient γcorrel in its expected adjusted multiplier :

Adjusted multiplier PA =
1

γcorrel
k1e

−γcorrel
(

1− 1
k1

)
∞∏
j=0

cosh
((σk1σk2

2j

)
g(A1(i))

)
In the previous formula, we have defined all parameters except standard deviation for
both markets. Hence, we start from the assumption made on the global time-variance :

V ar(k1) + V ar(k2) =

(
A1(i) + A2(i)

A1(max)

)
To get standard deviations, we have to define the value of each variances. The problem
is we only have one equation for two unknown. We assume that variance in market 1 is
linked to the other one in market 2 such as it corresponds to a linear combination of 1

k1

and 1
k2

. Furthermore, we add two propositions to define each of them.
Proposition 1. Proportional distribution of contributions : Since the sum of the two
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variances have to satisfy the equation above, the proportional distribution of contribu-
tions for k1 and k2 can be defined by12:

V ar(k1) =

(
α1

1

k1
+ (1− α2)

1

θk2

)
V ar(k2) =

(
(1− α1)

1

k1
+ α2

1

θk2

)
Proposition 2. Proportional contribution in variance : The PA reasons with propor-
tional contributions which means that it defines the contribution of k1 and k2 for one
variance. Due to the proportionality, the sum of two contributions has to be equal to
one. Moreover, the proposition 1 leads the PA to provides a symmetrical set of contri-
butions for the other variance. As a result, α1 = α2 = α and both variances defined by
the PA can be rewritten as follows13 :

V ar(k1) =

(
α

1

k1
+ (1− α)

1

θk2

)
V ar(k2) =

(
(1− α)

1

k1
+ α

1

θk2

)
Notice that if PA considers α 6= 1, then it will admit the existence of correlation between
two markets. However this level of correlation corresponds to the PA personal opinion
since this later wants to evaluate the correlation between two types of asset properly and
only bank ”i” can do that.

We are now able to express standard deviations :

σk1 =

√(
α

1

k1
+ (1− α)

1

θk2

)
(10)

σk2 =

√(
(1− α)

1

k1
+ α

1

θk2

)
(11)

12Notice that relative market size impact θ is analysed from the market 1 prudential regulation
perspective. From market 2 side, we will get V ar(k1) =

(
α1

θ
k1

+ (1− α2) 1
k2

)
and V ar(k1) =(

α1
θ
k1

+ (1− α2) 1
k2

)
. Since in our simulation θ = 1, this does not affect results.

13If we neglect proposition 2, then the PA will not reason in proportional contribution and other non-
linear effects will occur. For simplicity, these features will be studied in a future framework
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Consequently, the expected adjusted multiplier corresponds to :

f1(Y ) =

k1
γcorrel

e
−γcorrel

(
1− 1

k1

)
[∏∞

j=0 cosh
((

1
2j

√
α 1
k1

+ (1− α) 1
θk2

√
(1− α) 1

k1
+ α 1

θk2

)
g(k1)

)]−1
With :

g(A1(i)) =

[
A1(max)− A1(i)

A1(i) + A2(i)

]
g(A1(i)) =

[
1− 1

k1
1
k1

+ 1
k2

]
= g(k1)

The parameter γcorrel corresponds to the converging coefficient applied by the author-
ity14.
Once all parameters defined, we can compute the maximum relative asset size allowed
by the PA, i.e. the ceiling value kPA−ceiling1 .

kPA−ceiling1 =
γcorrele

γcorrel

(
1− 1

k1

)
∏∞

j=0 cosh
((

1
2j

√
α 1
k1

+ (1− α) 1
θk2

√
(1− α) 1

k1
+ α 1

θk2

)
g(k1)

)

Figure 6 draws the convergent dynamic path of kPA−ceiling1 with correlation effect (dashed
line) and without it (solid-dotted line) when initial value of relative asset size is equal to
k1 = 5 and k2 = 2 in market 1 and 2 respectively15.
We observe that the correlation risk effect accelerates the convergence toward the op-
timal asset level compared to standard case. Since the PA knows that its regulation in
market 1 affects its prudential management in the other market, it decides to limit this
impact by accelerating the convergence toward the optimal asset level in market 1.

3.3 Negative shock on A1t(i)

Figure 7 shows the effect of a negative shock which reduces of 10% bank size in market
1 on its kPA−ceiling1 level. We observe that the shock leads to reduce the ceiling rule of

14The value of γcorrel has to satisfy the convergence condition :

γcorreleγ
correl

(
1− 1

2

) [∏∞
j=0 cosh

((
1
2j

√
α1

1
2 + (1− α2) 1

2

√
(1− α1) 1

2 + α2
1
2

)
g(2)

)]−1
= 2

15For simplicity, we don’t consider dynamic paths of the rule where α 6= 1 since they provide same
shapes except for α = 0.5 but this particular case will be analysed in a next part.
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Figure 6: Dynamic path of kPA−ceiling1 with correlation risk effect (initial value k1 = 5,
k2 = 2, α = 1).

kPA−ceiling1 at almost 2.12. This decreasing is less pronounced than the situation without
correlation risk effect (see solid-dotted line). The reason has been mentioned before :
the PA wants to limit the impact of its market 1 prudential policy on the market 2.
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Figure 7: Impact of a negative asset 1 size shock with α = 1

3.4 Positive shock on A1t(i)

Figure 8 depicts the effect of a positive shock which increases of 10% bank size in
market 1 on its kPA−ceiling1 level. Results confirm the idea mentioned above since the
PA accelerates the convergence of its market 1 prudential regulation to limit its impact
on market 2.
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Figure 8: Impact of a positive asset 1 size shock with α = 1

4 Analysis of the dynamic PA behaviour

4.1 Elasticity analysis of bank income
This part studies the impact of a bank asset level change on the prudential regulation.
To do so, we consider the classical banking income function ρ(i) :

ρ(i) = RA1
t A1t(i) +RA2

t A2t(i)

Where RA1
t and RA2

t stand for the interest rates applied in loan market 1 and 2 respec-
tively. We assume that loan supply satisfies the demand and if bank decides to increase
a marginal amount of credit, it will match with a borrower. Prudential regulation is
applied as a regulation of credit supply which means that the new banking income func-
tion ρ(i) integrates the asset level allowed by the PA in each market Aceiling1t (i) and
Aceiling2t (i).
Hence :

ρprudential(i) = RA1
t Aceiling1t (i) +RA2

t Aceiling2t (i)

4.1.1 Without correlation risk effect

We consider the prudential rule without correlation risk effect to analyse the elasticity
between bank ”i” and PA behaviour. This elasticity in market ”m” can be expressed as :

em(i) =
∂Aceilingmt (i)

∂Amt(i)
× Āmt(i)

Āceilingmt (i)

Where Āmt(i) and Āceilingmt (i) are the steady-state value of bank ”i” and PA-ceiling asset
level respectively. Since we have supposed that Amt(i) corresponds to Aceilingmt (i) with
a one-period-lag in simulations, we deduce that Āmt(i) = Āceilingmt (i). Therefore, the
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elasticity corresponds to the marginal effect of the ceiling rule in market ”m” when
bank ”i” increases its asset :

em(i) =
∂Aceilingmt (i)

∂Amt(i)

To get the value ofAceilingmt (i), we consider the ceiling rule provided by the PA for market
1 and 2 :

For market 1 :

A1(Max)

Aceiling1t (i)
= γe

γ
(
1− A1t(i)

A1(Max)

)

Aceiling1t (i) =
1

γ
e
−γ
(
1− A1t(i)

A1(Max)

)
A1(Max)

For market 2 :

A2(Max)

Aceiling2t (i)
= γe

γ
(
1− A2t(i)

A2(Max)

)

Aceiling2t (i) =
1

γ
e
−γ
(
1− A2t(i)

A2(Max)

)
A2(Max)

Hence, the elasticity for each market can be expressed as :

For market 1 :

e1(i) = γe
−γ
(
1− A1t(i)

A1(Max)

)

For market 2 :

e2(i) =
1

γ
e
−γ
(
1− A2t(i)

A2(Max)

)

Figure 9 (figure 10) draws the dynamic path of the elasticity when a positive (negative)
shock increases (decreases) of 10% bank asset size at the fifteenth period in market ”m”.
Notice that before the shock, the PA provides a marginal asset level lower than the one
expected by the bank ”i” (which is equal to 1 by definition). This means that the PA
implements a policy to not incite bank ”i” to reach the critical size. When the shock
occurs, the elasticity increases (decreases) because the PA sets up a progressive and
converging prudential regulation to avoid sudden adjustment of bank which would lead
to a high volatility in the market. Nevertheless, the prudential regulation still constrains
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bank ”i” since the elasticity remains below the unity after the shock. Consequently, in a
situation where the interest is fixed, the marginal income obtained by the bank ”i” under
prudential regulation is lower than the one it should get without policy :

∂ρnew(i)

∂Amt(i)
<

∂ρ(i)

∂Amt(i)
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Figure 9: Impact of a 10% asset size increase on the elasticity.
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Figure 10: Impact of a 10% asset size decrease shock on the elasticity.
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4.1.2 With correlation risk effect

We now study the elasticity between prudential regulation and bank income when there
is a correlation risk effect. To do so, we consider the following ceiling rule in each
market :

For market 1 :

A1(Max)

Aceiling1t (i)
=

γcorrelPA1 e
γcorrel
PA1

(
1− A1t(i)

A1(Max)

)
∏∞
j=0 cosh

((
1
2j

√
α1

A1t(i)
A1(Max) + (1− α2) A2t(i)

θA2(Max)

√
(1− α1) A1t(i)

A1(Max) + α2
A2t(i)

θA2(Max)

)
g(A1t(i))

)

Aceiling1t (i) =

∏∞
j=0 cosh

((
1
2j

√
α1

A1t(i)
A1(Max) + (1− α2) A2t(i)

θA2(Max)

√
(1− α1) A1t(i)

A1(Max) + α2
A2t(i)

θA2(Max)

)
g(A1t(i))

)
γcorrelPA1 e

γcorrel
PA1

(
1− A1t(i)

A1(Max)

)
(A1(Max))

−1

Aceiling1t (i) = Γ(A1t(i);A2t(i))

For market two :

A2(Max)

Aceiling2t (i)
=

γcorrelPA2 e
γcorrel
PA2

(
1− A2t(i)

A2(Max)

)
∏∞
j=0 cosh

((
1
2j

√
α1

θA1t(i)
A1(Max) + (1− α2) A2t(i)

A1;2(Max)

√
(1− α1) θA1t(i)

A1(Max) + α2
A2t(i)

A2(Max)

)
g(A2t(i))

)

Aceiling2t (i) =

∏∞
j=0 cosh

((
1
2j

√
α1

θA1t(i)
A1(Max) + (1− α2) A2t(i)

A2(Max)

√
(1− α1) θA1t(i)

A1(Max) + α2
A2t(i)

A2(Max)

)
g(A2t(i))

)
γcorrelPA2 e

γcorrel
PA2

(
1− A2t(i)

A1;2(Max)

)
(A1;2(Max))

−1

Aceiling2t (i) = Ψ(A1t(i);A2t(i))

Contrary to the previous part, there are interactions between the evolution of assets in
both markets which leads to analyse four elasticity instead of two16 :

Elasticity between Aceiling1 and A1(i) :

eAceiling
1 /A1(i)

= Γ′(A1t(i);A2t(i)|A1t(i))

Elasticity between Aceiling1 and A2(i) :

eAceiling
1 /A2(i)

= Γ′(A1t(i);A2t(i)|A2t(i))

16Calculus of elasticities for two assets are detailed in the appendix.
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Elasticity between Aceiling2 and A2(i) :

eAceiling
2 /A2(i)

= Ψ′(A1t(i);A2t(i)|A2t(i))

Elasticity between Aceiling2 and A1(i) :

eAceiling
2 /A1(i)

= Ψ′(A1t(i);A2t(i)|A1t(i))

Figure 11 (figure 12) depicts the impact of a 10% positive (negative) shock on bank asset
size in market 1 on the evolution of four elasticities. The shock occurs at the fifteenth
period and priors correspond to α = 117.
Notice that before the shock, elasticities of asset in market 1 and 2 (orange and yellow
line) are lower than the ones studied without correlation risk effect. This is due to the PA
tougher prudential policy in market 1 to limit the impact of its regulation on the other
market. Furthermore, when the bank gets the same amount of asset in the two markets
(such as the equilibrium situation), the authority is not incited to make a ”cross-market”
action (see mauve and green line).
We observe that an increase of bank size in market 1 leads the PA to absorb the shock
partially because it wants to implement a progressive prudential policy (see orange line).
Since there is a correlation, PA tries to manage the imbalance in both markets at the
same time which leads the authority to coordinate its action between markets to dampen
the effect of the shock.

4.2 Uncertainty priors and prudential policy
This part studies the impact of priors on prudential regulation and bank behaviour. When
we have built variance, we have added two propositions to get a rational PA. The first
one corresponds to the proportional distribution of contributions while the second one
is the proportional contribution in variance. These two features lead to conclude that
α1 = α2 = α for both markets.
Through this two propositions we have seen that the PA coordinates its actions on both
markets to dampen shocks on bank size in a specific market. However, this coordination
disappears when α = 0.5 because it reflects the uncertainty of the PA regarding the
contribution of two asset types on variances. To illustrates this idea, we consider the
following variances :

17In the appendix, we write our equations and solutions according to α1, α2 to permit to readers to
reproduce effects of simulation when proposition 2 does not hold.
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Figure 11: Impact of a 10% asset 1 size increase on the four elasticities.
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Figure 12: Impact of a 10% asset 1 size decrease on the four elasticities.

For market 1 :

V ar(k1) =

(
0.5

1

k1
+ 0.5

1

θk2

)
V ar(k2) =

(
0.5

1

k1
+ 0.5

1

θk2

)

26



For market 2 :

V ar(k1) =

(
0.5

θ

k1
+ 0.5

1

k2

)
V ar(k2) =

(
0.5

θ

k1
+ 0.5

1

k2

)
Then we draw on figure 13 the evolution of the four elasticities which also corresponds
to the evolution of marginal income for each asset. We implement a positive shock on
bank size in market 1 at the fifteenth period with prior equal to α = 0.5. As we can see,
market 1 PA is obliged to manage the shock on its market by reducing the marginal gain
of bank progressively (orange line) but it doesn’t react in the other market (green mauve
and yellow line).
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Figure 13: Impact of a asset 1 size positive shock on four elasticities with α = 0.5.

5 Introduction of the mechanism in a DSGE model
This section is dedicated to see how introduce our mechanism in a Dynamic Stochastic
General Equilibrium model (henceforth DSGE model). This type of model works with
micro founded equations for each agent which composed the economy (households,
firms, banks, authorities,...). These equations link these agents each other and lead to
determine what is the intertemporal optimal choice for them. DSGE model can also
be defined as a mathematical system composed of first order conditions of agents and
constraints which drive the economy in a linear and/or non-linear fashion. The aim
of these models is to show how interactions between agents evolves when exogenous
stochastic shocks occur. The system is solved at each point in time and permits to draw
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impulse responses function of key macroeconomic variables.
In this part, we will not set up a DSGE model but rather show how to introduce our
mechanism inside a model already built. To do so, we consider the banking system from
the Gerali et al. DSGE model (Gerali et al. (2010)). This system is composed of a two-
stage bank when the first one corresponds to the wholesale branch which provides asset
to the second type of bank, retailers. This structure allows to apply prudential regulation
on wholesale banks to modify the credit supply offered by retailers to their customers.
The author defines the behaviour of the wholesale banks by a profit function. These
banks decide the quantity of loans they give to retailer and receive deposit from other
agents. Its aim is to maximize the sum of its expected profit. If we suppose that the
wholesale bank ”i” provides two types of asset A1t(i) and A2t(i), then we can rewrite
the programme of the Gerali et al. model by :

max
{A1t;A2t;Dt}

RA1
t A1t(i) +RA2

t A2t(i)−RD
t Dt − AC(A1t;A2t;BKt)

s.t A1t(i) + A2t(i) = Dt +BKt

Consequently :

max
{A1t;A2t;Dt}

RA1
t A1t(i) +RA2

t A2t(i)−RD
t Dt − AC(A1t;A2t;BKt)

Where RA1
t and RA2

t stand for the interest rate of the asset 1 and 2 respectively. RD
t

corresponds to the interest rate of depositDt whereasA1t(i) andA2t(i) represent level of
bank ”i” asset 1 and 2. Variable BKt reflects bank capital. In the equation above, there
is a quadratic adjustment cost AC(A1t;A2t;BKt) which depends of the gap between
capital-to-asset ratio BKt

A1t+A2t
and an optimal value υ. This feature has to catch the capital

requirement cost of bank when it departs from the optimal value. Since we would like
to justify the existence of this cost in our mechanism, we take it out of the maximization
programme. Thus, this latter can be rewritten as :

max
{A1t;A2t;Dt}

RA1
t A1t(i) +RA2

t A2t(i)−RD
t Dt

5.1 Prudential constraint without correlation risk effect
To introduce the mechanism, we consider that the credit supply provided by the whole-
sale bank in time ”t” corresponds to regulated level imposed by the PA. We suppose that
the asset level required by the progressive prudential policy is achievable by the bank.
As a result, the policy sequence is the following : in time ”t”, the authority implements
a prudential policy which is applicable to banks immediately. Since banks is able to
reach the new asset level, its credit supply (and its size) changes also in time ”t”.
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Therefore, during this period, the bank wants to maximize its profit by anticipating its
new asset level under prudential regulation :

max
{A1t;A2t;Dt}

E0

∞∑
t=0

Λ0,t

{
RA1
t

1

γ
e
−γ
(
1−

A1,t(i)

A1(Max)

)
A1(Max) +RA2

t

1

γ
e
−γ
(
1−

A2,t(i)

A2(Max)

)
A2(Max)−RD

t Dt

}

The first order conditions for the two assets and deposit give the optimal interest rates
fixed by the bank in each market :

RA1∗
t = RD

t e
γ

(
1−

A1,t(i)

A1(Max)

)
(12)

RA2∗
t = RD

t e
γ

(
1−

A2,t(i)

A2(Max)

)
(13)

Equation (12) and (13) shows that optimal rate for each asset type corresponds to the the
deposit rate (riskless asset) adjusted by the inverse of the marginal prudential regulation
effect on bank. Since a bank is regulated on its asset quantity, it would like to offset
its loan quantity loss by increasing its loan price (interest rate). Consequently, at the
optimum asset level, (i.e. when A∗m,t(i) = Am(max)

2
with m = 1; 2), the bank - which

wants to reach Am(max) with an optimal interest rate RA1∗
t = RD

t - would not be
incited to resist to the prudential regulation if it had the possibility to double its interest
rate to compensate its quantity loss. However, we have seen previously in figure 9 and
10 that the marginal effect of prudential regulation at the optimum is equal to 0.567,
i.e, an inverse marginal effect of 1.7637 instead of 2 as the bank would have expected.
However, the prudential regulation doesn’t take into account the correlation effect that
bank can use to offset losses by increasing asset quantity in the other market. This
explains why the bank is ready to accept an optimal interest rate lower than the one
expected. We are going to see that if the correlation risk effect is considered by the PA,
then the bank will double its loans price.

Figure 14 (figure 15) depicts the dynamic path of the Optimal Interest Rate (henceforth
OIR) when a positive (negative) shock hits the bank and increases (decreases) its size of
10%. When the shock occurs, the bank decides to reduce (increase) its OIR of almost
6% to manage its increase (reduction) of credit supply. The progressive and converging
prudential regulation of the authority leads the bank to decrease (increase) step by step
its OIR in order to limit its effect on the demand side.
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Figure 14: Impact of a 10% positive bank size shock on OIR.
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Figure 15: Impact of a 10% negative bank size shock on OIR.

5.2 Prudential constraint with correlation risk effect
When the correlation risk effect holds, the maximization programme of the wholesale
bank profit function can be expressed as :

max
{A1t;A2t;Dt}

E0

∞∑
t=0

Λ0,t

{
RA1
t Γ(A1,t(i);A2,t(i)) +RA2

t Ψ(A1,t(i);A2,t(i))−RD
t Dt

}
The first order conditions for the two assets and deposit give the optimal interest rates
fixed by the bank in each market :
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RA1∗
t =

RD
t

Γ′(A1t(i);A2t(i)|A1t(i))

1− Ψ′(A1t(i);A2t(i)|A1t(i))
Ψ′(A1t(i);A2t(i)|A2t(i))(

1− Γ′(A1t(i);A2t(i)|A2t(i))Ψ′(A1t(i);A2t(i)|A1t(i))
Γ′(A1t(i);A2t(i)|A1t(i))Ψ′(A1t(i);A2t(i)|A2t(i))

)
(14)

RA2∗
t =

RD
t

Ψ′(A1t(i);A2t(i)|A2t(i))

1− Γ′(A1t(i);A2t(i)|A2t(i))
Γ′(A1t(i);A2t(i)|A1t(i))(

1− Γ′(A1t(i);A2t(i)|A2t(i))Ψ′(A1t(i);A2t(i)|A1t(i))
Γ′(A1t(i);A2t(i)|A1t(i))Ψ′(A1t(i);A2t(i)|A2t(i))

)
(15)

Equation (14) and (15) show interaction effects between both markets in the definition
of the optimal interest rate in each of them. We have seen in the figure 11, 12 and 13
that the optimal asset level provides a null marginal prudential effect on cross-market
when both markets get the same size (θ = 1). Moreover, the action of the authority in
each market correponds to a marginal gain of 0.5002 unit instead of 1 as expected by the
bank. This leads to get an optimal inverse maginal effect equals to 1.9992 which is very
close to 2. This means that the authority prevents bank from optimizing its investment
strategy through correlation channel. Hence, the later decides to set its optimal interest
rate to offset the incurred losses by the prudential policy in its market.
This result confirms the soundness of our choice to construct a prudential rule whose
the authority doesn’t know the correlation between both markets. By considering the
expected value of adjusted multiplier with correlation risk effect, the PA is able to con-
straint the bank to stay to the optimal level by allowing it to double its price. This allows
the bank to compensate loans quantity losses to keep its profit unchanged18.

Figure 16 and 17 shows the impact of a 10% positive and negative bank size shock on
the OIR in market 1. The graphs describe how correlation affects the OIR in market
2. Notice that a bank size increase of 10% leads to a OIR reduction of 6% in market 1
while it decreases of almost 1% the market 2 OIR. Since both loan markets get the same
size19, the authority tries to incites bank to redirect the surplus of bank credit supply in
market 1 toward market 2 by decreasing interest rate of asset 2. This allows to dampen
the increase of the size bank in the former market and avoid to get a too powerful finan-
cial institution to be regulated. We also observe that positive and negative shock lead to

18This result holds when both markets have the same size, i.e., θ = 1. When it is not the case, the
inverse maginal effect is not close to 2 since bank knows that it has the opportunity to play with relative
asset size in the correlation channel to compensate the loans quantity losses of prudential regulation in
one market.

19When θ is different from 1, the asymmetrical size issue of both markets can lead the PA to manage
the shock differently.
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asymmetrical effect since the amplitude of interest reaction is higher when bank faces
an increase of its size. This is due to the preference of bank to be closer to the critical
size.
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Figure 16: Impact of a 10% positive bank size shock on OIR.
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Figure 17: Impact of a 10% negative bank size shock on OIR.
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6 Conclusion
We have developed a micro-founded model to give theoretical basis on the prudential
mechanism. The setting up of a PA action anticipated by the bank to evaluate prudential
policy leads to define an optimal asset size. This level corresponds to half the maximum
critical value defined by the PA when assumptions on a ”t-index” and a finite sum of
risk profile hold. To confirm our suggestion about the temporal index, we have realized
an empirical exercise based on a temporal index equals to a decade to represent the
interval period between two prudential regulation (Basel rules). This exercise provides
sounds results since the estimated relative asset size is not too far from the optimal one
(i.e., kopt = 2). The definition of an optimal asset level makes a converging prudential
policy possible for real PA. This later may want to stabilize the credit sectors separately
or simultaneously, by insuring a progressive convergence towards the optimal size. It
decides to consider two scenarios in its prudential rule: with and without correlation
between credit sectors. In absence of this effect, the PA only cares about the evolution
of bank asset in each sector and the prudential constraint reduces the marginal income
of the bank on its market. However, when the correlation is incorporated in the PA
decision rule, this one is obliged to consider the stability of all credit sectors rather than
to take into account only one. As we have seen, this additional issue incites the PA to
implement a faster convergent policy. This is due to the coordinated actions of the PA
on two different loans markets simultaneously oriented towards the stabilization of the
market that has hit by a destabilizing shock. Finally, we have seen that this mechanism
can be incorporated in a DSGE model with a two-stage banking system. A simple way
is to integrate the mechanism into the optimal decision of wholesale banks which drive
the credit supply of retailers. The constraint of prudential mechanism provides an other
perspective of how the simultaneous consideration of different credit market segments
in the definition of the prudential policy leads to manage bank sector through the optimal
interest rate setting for each asset type.
Further research will be oriented towards the implementation of this mechanism in a
large DSGE with different options for the bank’ credit portfolio, allowing to take into
consideration more realistic economic and financial environment.

References
[1] Pontell, H.N., Black, W.K. & Geis,G. Too big to fail, too powerful to jail? On the

absence of criminal prosecutions after the 2008 financial meltdown, Crime, Law
and Social Change, February 2014, Volume 61, Issue 1, pp 113.

[2] Mishkin, F.S. Over the Cliff: From the Subprime to the Global Financial Crisis,
Journal of Economic Perspectives, vol. 25, no. 1, 2011, pp. 49-70.

33



[3] Brunnermeier, M.K, Crockett,A.,Goodhart, C.A, Persaud,A., Shin, H.S. The Fun-
damental Principles of Financial Regulation, CEPR, 2009.

[4] Kashyap, A., Berner, R. & Goodhart, C. The Macroprudential Toolkit, IMF Eco-
nomic Review, 2011, Volume 59, Issue 2, pp 145161.

[5] Cosimano, T.F., Hakura, D. Bank Behavior in Response to Basel III: A Cross-
Country Analysis, IMF Working Paper, 2011, No. 11/119.

[6] Acharya, V., Engle,R., Pierret, D. Testing macroprudential stress tests: The risk of
regulatory risk weights, Journal of Monetary Economics,Volume 65, 2014, Pages
36-53.

[7] Gerali, A., Neri, S., Sessa, L., Signoretti, F.M. Credit and Banking in a DSGE
Model of the Euro Area, Journal of Money, Credit and Banking, 2010, Volume42,
Issues1, Pages 107-141.

[8] Quint, D., Rabanal, P. Monetary and Macroprudential Policy in an Estimated DSGE
Model of the Euro Area, IMF Working Paper, 2014

Appendix : Calculus of Γ′(A1t(i);A2t(i)) and Ψ′(A1t(i);A2t(i))

Calculus of Γ′(A1t(i);A2t(i))

We know that :

Γ(A1t(i);A2t(i)) =

∏∞
j=0 cosh

((
1
2j

√
α1

A1t(i)
A1(Max) + (1− α2)

A2t(i)
θA2(Max)

√
(1− α1)

A1t(i)
A1(Max) + α2

A2t(i)
θA2(Max)

)
g(A1t(i))

)
γcorrelPA1 e

γcorrelPA1

(
1− A1t(i)

A1(Max)

)
(A1(Max))−1

Where :

g(A1t(i)) =
A1(Max)− A1t(i)

A1t(i) + A2t(i)

Futhermore :

∞∏
j=0

cosh

((
1

2j

√
α1

A1t(i)

A1(Max)
+ (1− α2)

A2t(i)

θA2(Max)

√
(1− α1)

A1t(i)

A1(Max)
+ α2

A2t(i)

θA2(Max)

)
g(A1t(i))

)
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This is equivalent to express :

cosh

((√
α1

A1t(i)

A1(Max)
+ (1− α2)

A2t(i)

θA2(Max)

√
(1− α1)

A1t(i)

A1(Max)
+ α2

A2t(i)

θA2(Max)

)
g(A1t(i))

)

×
∞∏
j=1

cosh

((
1

2j

√
α1

A1t(i)

A1(Max)
+ (1− α2)

A2t(i)

θA2(Max)

√
(1− α1)

A1t(i)

A1(Max)
+ α2

A2t(i)

θA2(Max)

)
g(A1t(i))

)

By using the hyperbolic sine property, we get :

sinh
((

2
√
α1

A1t(i)
A1(Max)

+ (1− α2)
A2t(i)

θA2(Max)

√
(1− α1)

A1t(i)
A1(Max)

+ α2
A2t(i)

θA2(Max)

)
g(A1t(i))

)
(

2
√
α1

A1t(i)
A1(Max)

+ (1− α2)
A2t(i)

θA2(Max)

√
(1− α1)

A1t(i)
A1(Max)

+ α2
A2t(i)

θA2(Max)

)
g(A1t(i))

We rename the numerator by :

U = sinh

((
2

√
α1

A1t(i)

A1(Max)
+ (1− α2)

A2t(i)

θA2(Max)

√
(1− α1)

A1t(i)

A1(Max)
+ α2

A2t(i)

θA2(Max)

)
g(A1t(i))

)

And the denominator by :

V =

(
2

√
α1

A1t(i)

A1(Max)
+ (1− α2)

A2t(i)

θA2(Max)

√
(1− α1)

A1t(i)

A1(Max)
+ α2

A2t(i)

θA2(Max)

)
g(A1t(i))

Moreover we call Φ the ratio between U and V :

Φ =
U

V

And we express ∆ as :

∆ = e
−γcorrelPA1

(
1− A1t(i)

A1(Max)

)
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Derivative for Γ′(A1t(i);A2t(i)|A1t(i))

Since the gamma function is :

Γ(A1t(i);A2t(i)) = ∆× Φ× A1(Max)

γcorrelPA1

The derivative can be written as :

Γ′(A1t(i);A2t(i)|A1t(i)) = [(∆|A1t(i))′Φ + (Φ|A1t(i))′∆]× A1(Max)

γcorrelPA1

Where :

(∆|A1t(i))′ =
γcorrelPA1

A1(Max)
∆

And :

(Φ|A1t(i))′ =
((U |A1t(i))′ × V )− ((V |A1t(i))′ × U)

V 2

Futhermore

U = sinh (2×Q× P )

With:

Q =

√
α1

A1t(i)

A1(Max)
+ (1− α2)

A2t(i)

θA2(Max)

√
(1− α1)

A1t(i)

A1(Max)
+ α2

A2t(i)

θA2(Max)

P = g(A1t(i)) =
A1(Max)− A1t(i)

A1t(i) + A2t(i)

Hence :

(U |A1t(i))′ = 2 [(Q|A1t(i))′P + (P |A1t(i))′Q] cosh (2×Q× P )
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Where :

(P |A1t(i))′ = −
(
A1(Max) + A2t(i)

(A1t(i) + A2t(i))
2

)

And :

(Q|A1t(i))′ =
1

2QA1(Max)

[
2α1(1− α1)

A1t(i)

A1(Max)
+ α1α2

A2t(i)

θA2(Max)
+ (1− α1)(1− α2)

A2t(i)

θA2(Max)

]
Moreover :

(V |A1t(i))′ = 2 [(Q|A1t(i))′P + (P |A1t(i))′Q]

Derivative for Γ′(A1t(i);A2t(i)|A2t(i))

The derivative can be written as :

Γ′(A1t(i);A2t(i)|A2t(i)) = ∆× (Φ|A2t(i))′ ×
A1(Max)

γcorrelPA1

Where :

(Φ|A2t(i))′ =
((U |A2t(i))′ × V )− ((V |A2t(i))′ × U)

V 2

Moreover :

(U |A2t(i))′ = 2 [(Q|A2t(i))′P + (P |A2t(i))′Q] cosh (2×Q× P )

With :

(P |A2t(i))′ = −
(
A1(Max)− A1t(i)

(A1t(i) + A2t(i))
2

)

And :

(Q|A2t(i))′ =
1

2QA2(Max)

[
2α2(1− α2)

A2t(i)

θA2(Max)
+ α1α2

A1t(i)

A1(Max)
+ (1− α1)(1− α2)

A1t(i)

A1(Max)

]
Futhermore :

(V |A2t(i))′ = 2 [(Q|A2t(i))′P + (P |A2t(i))′Q]

37



Calculus of Ψ′(A1t(i);A2t(i))

We know that :

Ψ(A1t(i);A2t(i)) =

∏∞
j=0 cosh

((
1
2j

√
α1

θA1t(i)
A1(Max) + (1− α2)

A2t(i)
A2(Max)

√
(1− α1)

θA1t(i)
A1(Max) + α2

A2t(i)
A2(Max)

)
g(A2t(i))

)
γcorrelPA2 e

γcorrelPA2

(
1− A2t(i)

A2(Max)

)
(A2(Max))−1

Where :

g(A2t(i)) =
A2(Max)− A2t(i)

A1t(i) + A2t(i)

By using the hyperbolic sine property, the cartesian product of hyberbolic cosine be-
comes :

sinh
((

2
√
α1

θA1t(i)
A1(Max)

+ (1− α2)
A2t(i)

A2(Max)

√
(1− α1)

θA1t(i)
A1(Max)

+ α2
A2t(i)

A2(Max)

)
g(A2t(i))

)
(

2
√
α1

θA1t(i)
A1(Max)

+ (1− α2)
A2t(i)

A2(Max)

√
(1− α1)

θA1t(i)
A1(Max)

+ α2
A2t(i)

A2(Max)

)
g(A2t(i))

We rename the numerator by :

M = sinh

((
2

√
α1

θA1t(i)

A1(Max)
+ (1− α2)

A2t(i)

A2(Max)

√
(1− α1)

θA1t(i)

A1(Max)
+ α2

A2t(i)

A2(Max)

)
g(A2t(i))

)

And the denominator by :

N =

(
2

√
α1

θA1t(i)

A1(Max)
+ (1− α2)

A2t(i)

A2(Max)

√
(1− α1)

θA1t(i)

A1(Max)
+ α2

A2t(i)

A2(Max)

)
g(A2t(i))

Moreover we call Θ the ratio between U and V :

Θ =
M

N

And we express Λ as :

Λ = e
−γcorrelPA2

(
1− A2t(i)

A2(Max)

)
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Derivative for Ψ′(A1t(i);A2t(i)|A2t(i))

Since the psi function is :

Ψ(A1t(i);A2t(i)) = Θ× Λ× A2(Max)

γcorrelPA2

The derivative can be written as :

Ψ′(A1t(i);A2t(i)|A2t(i)) = [(Θ|A2t(i))′Λ + (Λ|A2t(i))′Θ]× A2(Max)

γcorrelPA2

Where :

(Λ|A2t(i))′ =
γcorrelPA2

A2(Max)
Λ

And :

(Θ|A2t(i))′ =
((M |A2t(i))′ ×N)− ((N |A2t(i))′ ×M)

N2

Futhermore

M = sinh (2× S ×R)

With:

S =

√
α1

θA1t(i)

A1(Max)
+ (1− α2)

A2t(i)

A2(Max)

√
(1− α1)

θA1t(i)

A1(Max)
+ α2

A2t(i)

A2(Max)

R = g(A2t(i)) =
A2(Max)− A2t(i)

A1t(i) + A2t(i)

Hence :

(M |A2t(i))′ = 2 [(S|A2t(i))′R + (R|A2t(i))′S] cosh (2× S ×R)
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Where :

(R|A2t(i))′ = −
(
A2(Max) + A1t(i)

(A1t(i) + A2t(i))
2

)

And :

(S|A1t(i))′ =
1

2SA2(Max)

[
2α1(1− α1)

A2t(i)

A2(Max)
+ α1α2

θA1t(i)

A1(Max)
+ (1− α1)(1− α2)

θA1t(i)

A1(Max)

]

Moreover :

(N |A2t(i))′ = 2 [(S|A2t(i))′R + (R|A2t(i))′S]

Derivative for Ψ′(A1t(i);A2t(i)|A1t(i))

The derivative can be written as :

Ψ′(A1t(i);A2t(i)|A1t(i)) = Λ× (Θ|A1t(i))′ ×
A2(Max)

γcorrelPA2

Where :

(Θ|A1t(i))′ =
((M |A1t(i))′ ×N)− ((N |A1t(i))′ ×M)

N2

Moreover :

(M |A1t(i))′ = 2 [(S|A1t(i))′R + (R|A1t(i))′S] cosh (2× S ×R)

With :

(R|A1t(i))′ = −
(
A2(Max)− A2t(i)

(A1t(i) + A2t(i))
2

)

And :

(S|A1t(i))′ =
1

2SA2(Max)

[
2α2(1− α2)

θA1t(i)

A1(Max)
+ α1α2

A2t(i)

A2(Max)
+ (1− α1)(1− α2)

A2t(i)

A2(Max)

]

Futhermore:

(N |A1t(i))′ = 2 [(S|A1t(i))′R + (R|A1t(i))′S]
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